Skip to contents

Get the scale coefficents used for variance estimation in a replicate design object.

Usage

get_rep_scale_coefs(rep_design, type = "combined")

Arguments

rep_design

A replicate design object

type

Either 'overall', 'specific', or 'combined'.

Details

For a statistic \(\hat{\theta}\), replication methods estimate the sampling variance using \(R\) replicate estimates, with the estimate for the \(r\)-th replicate denoted \(\hat{\theta}_r\).

The formula for the variance estimate is the following: $$ v(\hat{\theta}) = C \sum_{r=1}^{R} c_r (\hat{\theta_r} - \hat{\theta})^2 $$

The terms \(C\) and \(c_r, r=1,\dots,R\) are scale coefficients. \(C\) is the overall coefficient, and \(c_r, r=1,\dots,R\) are replicate-specific coefficients.

Specifying get_rep_scale_coefs(type='overall') returnrs the overall coefficient \(C\). Specifying type='specific' returns the replicate-specific coefficients \(c_r, r=1,\dots,R\).

Specifying type='combined' returns a vector with \(R\) elements, where the \(r\)-th element is \(C \times c_r\).

Examples

data('api', package = 'survey')

api_design <- svydesign(
  data    = apistrat, 
  id      = ~ 1, 
  strata  = ~ stype,
  weights = ~ pw,
  nest    = TRUE
)

jk_design <- api_design |>
  as_random_group_jackknife_design(
    replicates = 12
  )

jk_design |>
  get_rep_scale_coefs('overall')
#> [1] 1

jk_design |>
  get_rep_scale_coefs('specific')
#>  [1] 0.915 0.915 0.915 0.915 0.915 0.915 0.915 0.915 0.920 0.920 0.920 0.920

jk_design |>
  get_rep_scale_coefs('combined')
#>  [1] 0.915 0.915 0.915 0.915 0.915 0.915 0.915 0.915 0.920 0.920 0.920 0.920